NR evolution — realizing the full potential of 5G

Janne Peisa, Principal Researcher, Ericsson Research

5G — Beyond Mobile Broadband

New opportunities and flexibility for the unforeseen

Wireless-access evolution — Timeline

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
		Rel-14	el-14 Rel-15		Rel-16	Rel-17	7	Rel-18	
5G research		Initial 5G				5G evolution			

— First release of NR (Rel-15) completed in June 2018

- Evolution of NR
 - First major enhancements already in Rel-16 (IAB, NR-U, ...)
 - Continued evolution in subsequent releases including frequencies up to and beyond 52.6 GHz, massive MTC, ...

NR Rel-15

NR evolution

NR Rel-15 key features

Ultra-lean design

Forward compatibility

Multi-antenna support

Wide spectrum range

Low latency

LTE – NR coexistence

Network slicing

Modular architecture DU/CU split, SBA

Architectural options

3

- Non-standalone NR
 - LTE handling initial access and mobility
 - NR is a "data rate booster"
 - Connects to EPC

- Stand-alone NR
 - NR handles initial access and mobility
 - Connects to 5G CN

Some topics in NR Rel-16

TSN time-sensitive networking

V2X vehicle-to-anything

P transmission-reception point

URLLC ultra-reliable low latency communication

TDD time-division duplex

Unlicensed spectrum LAA and stand-alone

Integrated Access Backhaul NR for backhauling

V2X Sidelink, Uu enhancements, QoS,...

URLLC enhancements

Diversity, latency, ...

Industrial IoT

TSN support, time synchronization,...

Multi-antenna enhancements Beam management, CSI reporting, ...

Remote Interference Management TDD, athmosperic ducts, ~300 km

NR Unlicensed Spectrum operations

- Unlicensed spectrum considered by cellular operators as a complementary tool to augment their service offering
- Adapt initial/channel access, scheduling/HARQ, and mobility operations for unlicensed spectrum regulation & characteristics
 - Reuse existing NR as much as possible
- Existing bands and potentially new bands
 - Preferred band is 5/6 GHz
 - Coexistence study for new bands
- Support diverse deployment cases
 - Carrier aggregation NR + NR-U
 - Dual connectivity LTE/NR + NR-U
 - Standalone NR-U

Vehicle-to-everything (3GPP V2X Phase 3)

- Improved support for V2X services
 - LTE-V2X enables day-1 safety
 - NR-V2X is a complementary technology addressing new use cases (e.g. platooning, advanced driving, sensor sharing) and tighter requirements
- Study NR design for V2X
 - Targeting a wider range of frequencies (up to 52.6 GHz), with initial focus on FR1 frequencies.
 - Cellular (Uu) enhancements for high mobility scenarios and improved efficiency when delivering ITS traffic
 - Sensing-based resource allocation scheme mostly designed for aperiodic transmissions.
 - Some unicast/groupcast features such as link adaptation, power control, etc.
- > Ensure optimal coexistence

Integrated Access Backhaul

— Benefits:

- Coverage extension for >6GHz
- Easy and cost-efficient deployment
- Most relevant deployment scenarios
 - Outdoor, small-cell relay nodes (targeting FWA & eMBB)
 - Fixed relays, but forward compatible to nomadic/mobile
 - Limited number of hops (>=2)
 - Star / tree deployment (no mesh)
 - Inband and outband relaying using >6GHz
 - IAB transparent to UEs (Rel-15 backwards-compatible)
 - Support SA and NSA operations

NR URLLC RAN1-led, L1 focused

- Improved reliability (connectivity and operations) and latency
 - Enhance radio channel reliability
 - Decrease end-to-end latency via faster access
- Improve full automation and flexibility
 - Scheduling enhancements

NR Industrial IoT

Ran2-led, Higher layer focused

URLLC use cases in TS 22.261 and TS 22.804

- Industry-grade NR for Industrial IoT
 - Ethernet and IEEE 802.1 (e.g. TSN) features often the basis in such networks. 5GC introduces Ethernet-type PDU Session.
 - Optimizations for Ethernet PDU Sessions
 - Header compression
 - Possible OoS enhancements
 - Enabling time-synchronized operations of devices (e.g., time synchronized UEs to enable synchronized operating on joint tasks)
 - Support for redundant PDU sessions
 - aligned with SA2
 - Study and define mid-tier NR UE (no new design)

NR Remote Interference Management and Cross-Link Interference

- RIM
 - BS-to-BS interference over large distance (up to 300 km)
 - Due to tropospheric ducting, which occurs in certain weather conditions
 - Static and dynamic RIM
 - Frameworks for centralized and distributed RIM
- CLI
 - Dynamic TDD

Possible topics in Rel-17

Continuation of Rel-16 — examples

New topics – examples

What about the longer time perspective?

Longer-term evolution

Some examples

Beyond 100 GHz

Massive IoT

Flexible network topologies

Device cooperation

Cellular as a sensor

Machine Learning – Artificial Intelligence

5G — Beyond Mobile Broadband

New opportunities and flexibility for the unforeseen

Use case

Intersection control

Main requirements

- Latency
- Reliability
- Connected devices

Demonstration at AstaZero (test facility Sweden)

- Connecting two XC-90 cars and one Volvo truck
- Coordination application running in cloud

Cloud based control logic

A fully 5G connected manufacturing plant

- Digital twins and real-time control loops in edge cloud
- Data management & machine learning to plan and order maintenance and workflow
- AR/VR to visualize workflow & machine status
- Indoor positioning & edge cloud for automatic control of AGVs in factory
- With everything automated, using AR/VR for monitoring and issuing work orders, lights are no longer necessary

Summary

3

- 5G New Radio has been standardized in Release 15 and deployments are ongoing
- ... but this is only the beginning
- The common 3GPP approach is ongoing with continuous improvements in every release
- Release 16 is in progress, with significant NR improvements including
 - Integrated Access and Backhauling
 - Unlicensed spectrum
 - Improved Industrial IoT
 - Sidelink communication
- Preparations towards Release 17 are on-going

