

5G Evolution and Beyond- Real & Future -

5G Laboratories NTT DOCOMO, INC.

5G Evolution and Beyond

■ 5G is now in commercial development phase, and researchers should focus on future wireless technologies for around 2025 and beyond

Real and Future

Problems from Real

&

Dreams for Future

5G Evolution and Beyond

for **any** use-cases, **any** requirements, and **any** consumer/industry markets

Flexibility

The Real for 5G Evolution

Observations from 5G Real Issues

Key technical issues

mmW
coverage/mobility
improvement

Uplink performance enhancement

High requirements for industry use cases

Evolution Required from 5G Real Issues

- Enhancement in "Uplink" performances
 - » Uplink is critical on mmW coverage
 - » High uplink performance is required in many industry use cases
- Support of "Guaranteed" performance in addition to legacy "Best effort"
 - » High demand from industry use cases URLLC is only an example

New-type Deployment for mmW Coverage

- Mixture of legacy and new-type deployments, e.g., IAB, with following desired features
 - Small size and light weight
 - Cost and energy efficient
 - Plug-and-Play and wireless

Technical study considering such new-type mmW deployment will be needed NTT DOCOMO, INC., Copyright 2019, All rights reserved.

Industry Dedicated 5G Network

- High demand of industry network to provide specific and high performances, e.g.;
 - Relatively high minimum data rate (sometimes for many devices, sometimes uplink heavy)
 - High reliability to keep service quality
 - Low end-to-end latency
 - Easy temporary network deployment for events, construction sites, etc.
 - → Dedicated 5G network is a promising solution to address such requirements
- A technical issue public/industry overlay deployment

The Future for 5G Evolution and Beyond

5G Evolution and Beyond – Fireworks

New combinations of requirements for new use cases

Extreme requirement for specific use cases eMBB mMTC URLLC

• 5G is able to satisfy various requirements for various use-cases

- 5G evolution and beyond should be able to reach further varieties of markets
- Available freedom is only in {time, frequency, space}
- Need to consider what should be achieved at the cost of what

Extreme Targets for Future Challenge

Extreme high data rate/capacity

- Peak data rate > 100Gbps exploiting new spectrum bands
- > 100x capacity for next decade

Extreme coverage

- Gbps coverage everywhere
- New coverage areas, e.g., sky, sea, space, etc.

Extreme low energy & cost

- Devices free from battery charging
- Affordable mmW devices

5G evolution & beyond

New combinations of requirements for new use cases

Extreme low latency

- E2E very low latency
- Always low latency

Extreme high reliability

 Guaranteed QoS for wide range of industry use cases

Extreme massive connectivity

- Massive AI devices
- High-precision positioning

Future Use Cases – Examples

Super high-quality & real-time VR/AR

Extreme high data rate/capacity

Extreme low latency

Broadband/URLLC for flying mobility

Device cluster free from buttery charging

Extreme coverage

Extreme high reliability

Massive IoT for anything & anywhere

Extreme coverage

Extreme massive connectivity

Extreme low energy & cost

Extreme massive connectivity

New Spectrum – Potential Candidates (10-300GHz)

	Freque range (-	Bandwidth (GHz)	Relative BW (%)	∫] ←					
	10.7	11.7	1	8.93		- 10-20 GHz → Technically attr — 5G band in Japan (four 400	ractive but beavily used		ad by other systems	
	14.4	15.25	0.85	5.73			-MHz blocks will be initially assigned)			
	27	29.5	2.5	8.85						
	31.5	33.4	1.9	5.86						
	39.5	41	1.5	3.73	Potential candidates for near future 5G band in J				Japan (depends on WRC-19 outcome)	
	45.3	47	1.7	3.68		- 39.5-41.0GHz (1.5GHz)	rapan (depends on time 13 datesine)			
	47.2	50.2	3	6.16		- 47.2-50.2GHz (3GHz)	6 bands, i.e., 37-40 GHz and 47.2-48.2 GHz			
	51.2	52.6	1.4	2.70		- 41.2-JU.2GHZ (JGHZ)				
	66	71	5	7.30		Potential candidates for futu	ure 5G band above 5		52GHz (depends on WRC-19 outcome)	
	71	76	5	6.80						
	81	86	5	5.99		 66-71GHz (5GHz) Not heavily used in Japan, unlicensed in other countries 71-76GHz (5GHz) E-band, high speed wireless communications 				
	92	102	10	10.31						
	102	105	3	2.90	- 81-86GHz (5GHz) E-band, high speed wireless communic		ss communications			
	136	148.5	12.5	8.79						
	151.5	164	12.5	7.92		Not heavily used in Japan				
	167	182	15	8.60	\ \	Potential bands for long-ter	m futuro	ctudy (ab	ovo 100CHz)	
	185	200	15	7.79		Potential ballus for long-ter	III lutule	Tuture study (above 100GHz)		
	209	226	17	7.82						
	231.5	248	16.5	6.88						
	above 252 infinity								Commercial Telecommunications, Public and General Services	
Public and G Services (Mo Radio Astron	bile) Se			Amateur	ublic	ic and General Services ad / Mobile) [6] Convenience Radio Unilicensed power da Communicas systems	ta ition	ed 7	(Fixed / Mobile) [7] Radio Astronomy	
31.5			43.5 42.5	47.2 47.0	50.4	57.0 55.78 54.25 52.6	71.0	76.0	200 200 200 200 200 200 200 200 200 200	
31 Radars Fixed Wireless Access System						Broadcast Auxiliary Services (Mobile) [2]	Ama	Amateur	Source: MIC radio use web site	

Evolutions Triggered by AI Technologies

- Evolutions triggered by AI will happen in 5G era and beyond
 - Al for RAN Super intelligent RAN
 - Massive AI devices
 - » D2D and UE cooperation will be more important
 - » Potential high requirements for them, with abilities beyond human beings

Cell design, parameter optimization, estimation and controls, etc.

Massive AI devices

Rise of GPU computing (Source: Presentation by NVIDIA)

Integration of Non-Cellular/Wireless Technologies docomo

- Integration of non-cellular technologies into 5G evolution and beyond system
 - Broadcast/Satellite systems e.g., for multi-cast service, emergency backhaul, etc.
 - Secondary use of spectrum and unlicensed spectrum use based on inter-RAT coordination

- Integration of non-wireless communication technologies into 5G evolution and beyond system
 - Sensor/camera information
 - Wireless charging/energy harvesting

→ NR expansion for larger-scale ecosystem, global spectrum optimization, etc.

Future Radio Technologies – Examples

Super long-range broadband

to exploit new coverage areas

Synergy of combinations

New network topologies

including device cooperation

to improve coverage & capacity

to cope with variety of use cases

Massive MIMO enhancements to improve data rate & capacity

Advanced spatial multiplexing and diversity

High-precision 3D positioning to cope with variety of use cases

0.1 m-order accuracy in local environment

Summary

Real and Future for 5G Evolution and Beyond **Performance**

Broadband for everything

Super long-range

Gbps everywhere

Al for RAN

Exploiting higher spectrum

Massive Al

Efficiency

New-type deployment

New spectrum use

Guaranteed performance

E2E low latency

Extreme use cases

High-precision positioning

Flexibility

Industry dedicated network

New coverage area

New combination of requirements

byright 2019, All rights reserved.