

Wireless Access Evolution

Janne Peisa Ericsson Research

High-level 5G vision still valid

Non-limiting access to information and sharing of data ...

... anywhere and anytime ...

... for anyone and anything

Evolved 5G and beyond

New use cases

Manufacturing and industrial IoT Automotive and ITS XR (AR/VR/mixed reality/...) Fixed wireless access

Devices & Hardware

Co-operative transmission / D2D Zero energy Zero cost

Radio access

Higher frequencies
Integrated access and backhaul
New topologies and mesh

Networking

Encryption compatible/collaborative optimizations Artificial Intelligence / Machine Learning Intelligent SON- oriented

Open source

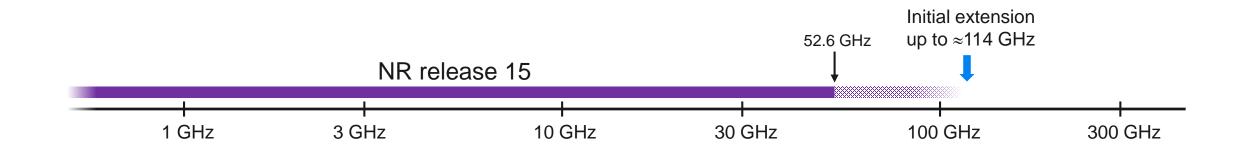
Network service mesh

Integrated connectivity and edge compute

Zero-touch

Trusted networking

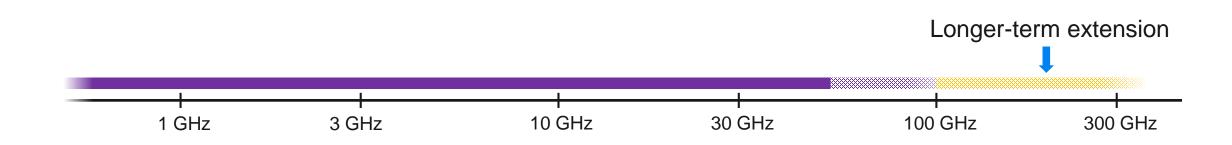
- Continued expansion into higher frequencies
- Flexible network topologies
- Device co-operation
- Technology components for massive IoT
- Cellular as a sensor
- Machine learning and artificial intelligence in the wireless-access network



NR release 15 supports operation up to 52.6 GHz

Initially considering extension up to approximately 114 GHz

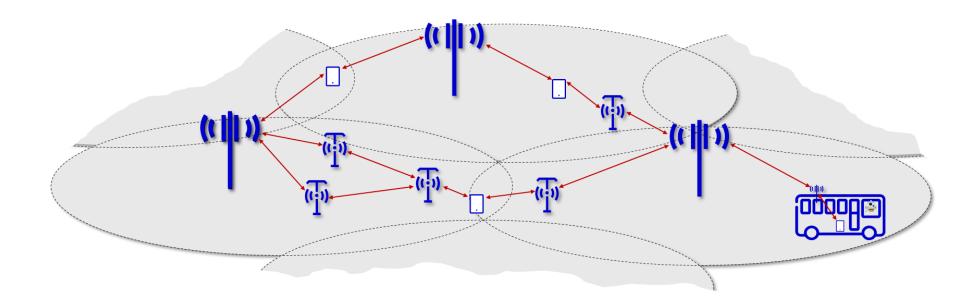
Assumption: Reuse current NR waveform with extended numerology



Further extension beyond 100 GHz as part of longer-term radio-access evolution

Based on experience gained from first mmw NR deployments

Potential re-evaluation of basic air-interface design



From a cell-focused topology towards a "best-path" topology under network control

- Multi-site connectivity
- Multi-hop
- Mobile relays

Device co-operation

Turning devices into integrated components of the overall connectivity fabric

- Device-based relaying
- Co-operative transmission and reception
 - Turning multiple physical devices into a single virtual device with many antennas
- Especially for future IoT applications

Device-based relaying ((|| 1))

Coherent or non-coherent transmission Selection or soft combining

Massive IoT in the 5G era

LTE based technologies will be the main technologies for massive IoT also in the 5G era

Cat-M and NB-IoT

Cat-M ("enhanced MTC")

- Extension of LTE introduced in Release 13
- Lower device complexity/cost by enabling devices
 with reduced bandwidth (20 MHz ⇒1.25 MHz)
- Enhanced coverage (+15 dB)
- Longer battery life due to enhanced DRX

NarrowBand-IoT

- Separate air-interface spectrum compatible with LTE
- 200 kHz bandwidth
- Stand-alone, inband, or guardband deployment
- Intended to replace GSM for mMTC applications

Potential technology areas for future mMTC evolution

- Industrial sensors (cost reduced devices with multi-Mbps data rates without coverage extension functions)
- Zero cost devices
- Zero energy devices.

Devices operating on ambient energy only

- Non-radio-based energy source (e.g. solar-powered devices)
- Radio-based energy source (e.g. energy harvesting, backscattering)

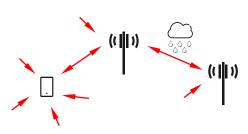
Energy harvesting

- Device power extracted from RF wave
- Can be combined with backscattering

Backscattering

- Communication by changing properties of "reflected" wave
- "RF ID over a larger distance"

Example use cases: cargo tracking in a factory hall Combined with "printables" for "zero-cost"



— Usage of radio signals to "sense" the surroundings

— Examples:

 Wheather prediction using pathloss measurements (already demonstrated in practice using MiniLink)

 Local maps created based on signal reflections of mm-wave signals

Challenges for AI in wireless networks:

- Very large number of parameters to be optimized
- Reward-function design often complicated, e.g. number of handover failures minimized by not allow users in bad radio coverage
- Limited support for data access and actuation
- 1. Machine learning in current networks
- ML applied to RRM algorithms
- Joint training of algorithms to ease integration
- 2. Enhancements for machine learning
- Additional device measurements / information
- Improved access to data (RAN/CN/OSS interfaces)
- Downloadable neural networks
- 3. AI-native Air Interface (AI-AI)
- Enable the use of machine-learning algorithms in all parts of the system, potentially even adapting the basic waveform

1. Machine learning in current networks

2. Enhancements for Machine learning

3. AI-native Air Interface (AI-AI)

