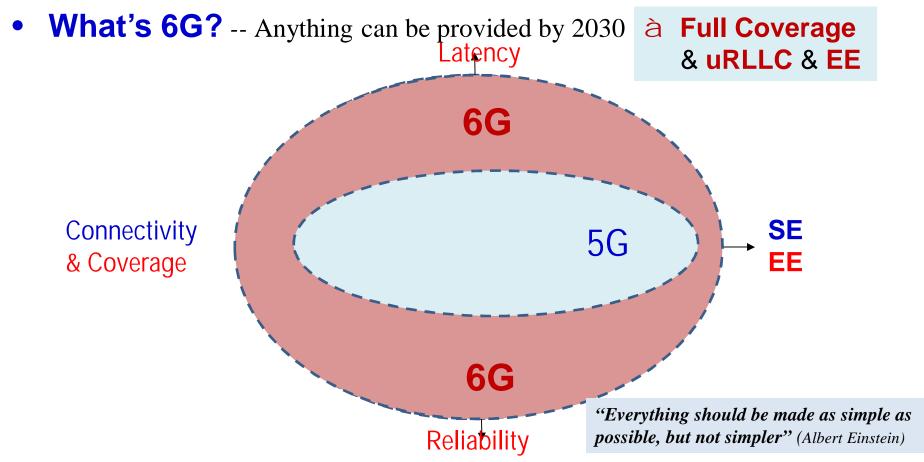


Mobility-Enhanced Edge inTelligence (MEET) for 6G

Zhisheng Niu


Department of Electronic Engineering Tsinghua University

March 26, 2019

5G: What's Missing?

- What's 5G? -- Everything 4G couldn't provide à There will be no 6G!
 - It's EVERYTHING, like **ATM** (Asynchronous Transfer Mode)!
 - Everything is nothing & Nothing is everything ("*Duck Theorem*")
 - Realistically, anything can be provided by 2020 à eMBB & MTC

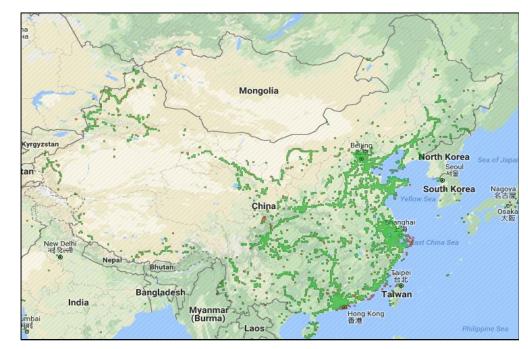
6G Vision

• "6Genesis" by Academy of Finland, April 2018

- 3 strategic directions

ü near-instant & unlimited wireless connectivity

ü distributed computing and intelligence


ü materials and antennas at very high frequencies

- First 6G Wireless Summit

ü 24-26 March 2019, Levi, Lapland, Finland

• 3F's in IMT-2020 (China)

- FULL Coverage
- FULL Spectrum
- FULL Applications

Space-Air-Ground Integrated Network

Niulab.

Key Challenges

- High-precision 3D localization (~cm)
- Fusion of multi-dimensional & multi-scale sensing information
- Near-instant context-information distribution (~ms)
- Dynamic reconfiguration of heterogeneous resources & network functions

"Space-Air-Ground Integrated Vehicular Networks for Immersive Driving Experience" (PI), NSFC Principal Project (2017-2021)

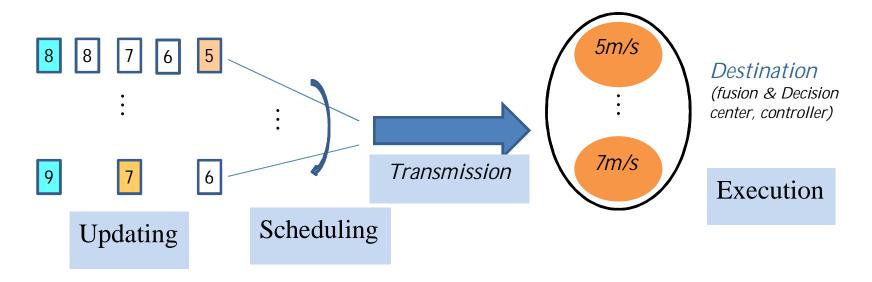
uRLLC: a Grand New Challenge

• Reliability & Latency: Inter-winded

- **Reliability**: Successful delivery probability within a deadline (goodput)
- Latency: Reliable delivery as fast as possible
- Reliability w/o latency-constraint or resource-limitation
 - **Retransmission** (e.g., ARQ in Internet)
 - **Diversity** (e.g., multi-path routing, multi-channel transmission)
- Low latency *w/o* (too high) reliability requirement
 - Short packet/frame (finite blocklength)
 - Blocking or alternative routing (e.g., telephone network)

ultra Reliable AND Low-Latency with Limited Resources!

Latency: a Puzzling Word


- Air Interface vs E2E?
 - E2E *communication* delay: <u>packetizing</u>, <u>coding/modulating</u>, transmitting, <u>decoding/demodulating</u>, <u>de-packetizing</u>, <u>fronthaul/backhaul</u>,
 - You can't just move the bottleneck to others
- **Communication vs Information?**
 - E2E *information* delay: <u>sensing</u>/<u>learning</u>, <u>updating</u>, <u>scheduling</u>, transmitting, <u>execution</u>, ...
 - Freshness (Age) of Information
- Mean vs Bound?
 - Delay bound guarantee is much harder than mean delay guarantee
 - Delay bound violation probability: $P\{D>D_{max}\} < \epsilon$ leads to reliability

Freshness of Information

✓ Age of Context/Status Information

- Timely update on context/status information à *crucial in decisionmaking systems*
- Acquisition à Scheduling à Transmission à Execution à Feedback

Z. Jiang, B. Krishnamachari, S. Zhou, Z. Niu, "Decentralized status update for age-of-information optimization in wireless multiaccess channels," *IEEE International Symposium on Information Theory (ISIT)*, 2018

X. Zheng, S. Zhou, Z. Jiang, Z. Niu, "Closed-Form Analysis of Non-Linear Age-of-Information in Status Updates with an Energy Harvesting Transmitter", *IEEE Trans. Wire.ess Commun.*, 2019 (*under revision*)

uRLLC: Context-awareness

- Traditionally, networks designed for the worst-case
- In reality, the worst case is very rare

 $\begin{array}{l} \underline{\text{Poisson} (\lambda)} & & \\ \hline \textbf{Buffer}(k) \rightarrow \boxed{\textbf{Exp}(\mu)} \end{array} \end{array} \qquad \begin{array}{l} \textbf{E}[D] = \frac{\rho(\mathbf{1} - \rho) \sum_{i=0}^{k} i\rho^{i}}{\lambda(\mathbf{1} - \rho^{k+1})} \\ \hline \textbf{M/M/1(k) \text{ service system}} & \\ \rho = \lambda/\mu \end{array} \qquad \begin{array}{l} \textbf{P}\{D \geq Dmax\} = \rho e^{-\mu(1-\rho)Dmax} \leq \varepsilon \\ P_{\text{B}} = \rho^{k+1}(1-\rho)/(1-\rho^{k+2}) \end{array}$

For k=2, $\lambda=3$, $D_{max}=10ms$

- If E[D]=10ms, then μ =18; If E[D]=1ms, then μ =56

- If
$$P_B \le 10^{-3}$$
, then $\mu = 28$;

- If
$$\epsilon = 10^{-3}$$
, then $\mu = 251$;

If $P_B \le 10^{-5}$, then $\mu = 138$ If $\epsilon = 10^{-5}$, then $\mu = 621$

"Context-aware uRLLC V2X for Connected & Automated Cars" (PI), *Intel Collaborative Research Institute for Intelligent and Connected Automated Cars* (2018-2021)

Context-aware uRLLC

- Traditionally, networks designed for the worst-case
- In reality, the worst case is very rare
- uRLLC should be context-aware

KPI	value	Scenario
Delay (e2e, status update packets)	1-10ms	 Automated overtaking & high density platooning status updates for collaborative collision avoidance
	50ms	 See through (10 Mbit/s) & Bird's Eye view (40 Mbit/s)
	100ms	Trajectory handshake
Reliability	10 ⁻⁵ 10 ⁻³	Automated overtake & High density platooningTrajectory handshake
Positioning	10cm	Vulnerable road user discovery
	30cm	 Automated overtake & High density platooning & Trajectory handshake

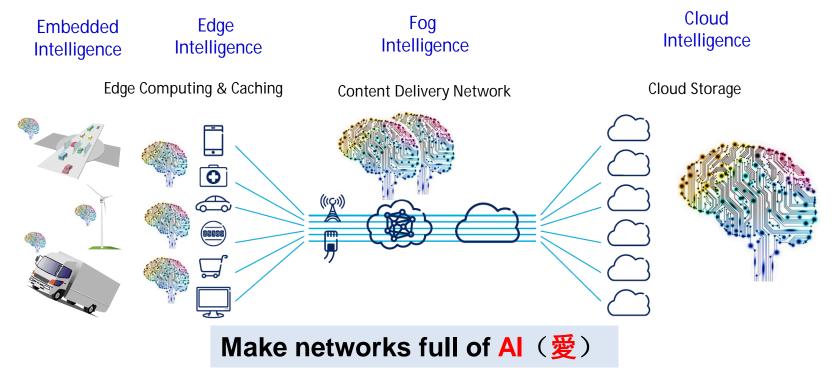
"Context-aware uRLLC V2X for Connected & Automated Cars" (PI), *Intel Collaborative Research Institute for Intelligent and Connected Automated Cars* (2018-2021)

uRLLC: Solutions (There is no free lunch)

• Bring extra resources (redundancy) closer to UEs

- Communication: mmWave à coverage cost & blockage
- Compute: cloud computing, *edge computing*, traffic offloading, ...
- Caching/Push: mobile caching, edge caching, content push, ...

SDN/NFV enables **3C** convergence


• Bring extra information (*intelligence*) across network

- Traffic characteristics & QoS requirements
- Network topology and conditions
- Mobility information

BigData/AI enables distributed intelligence

Connected Intelligence via Al

• Embed *intelligence* across whole network (access, routers, gateways, servers) to provide greater level of automation and adaptiveness (agility, resiliency, security, etc.)

Challenge: Who responsible for deployment/operation of edge clouds?

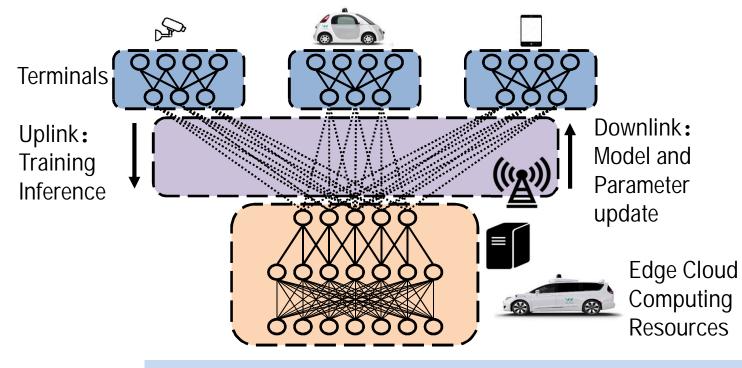

"Smart Networking in the Era of Artificial Intelligence" (Co-PI), *NSFC–Scientific Foundation of Ireland* (2018-2022)

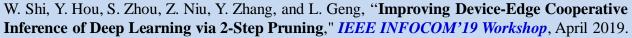
Niulab

Intelligent Vehicles for Smart Networking & City

- Autonomous vehicles with rich sensing, communication, computing, and caching capability, and, power supply, enabling them to be moving sensors NW, moving edge clouds, and even moving BSs
- Moving vehicles can bring Matters (people, goods), Energy, and Information (intelligence) to every corners of the city

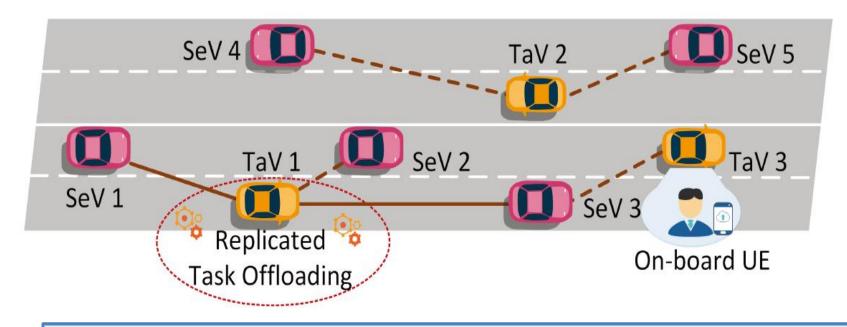
INTELLIGENT VEHICLE




Distributed Learning via Moving Vehicles

• How can networking help AI? à Learning over the Air

- Cannot send ALL data to clouds
- Limited compute and storage on embedded nodes
- Leverage edge caching and computing to improve efficiency of deep learning models via wireless networks



Augment Intelligence via Moving Vehicles

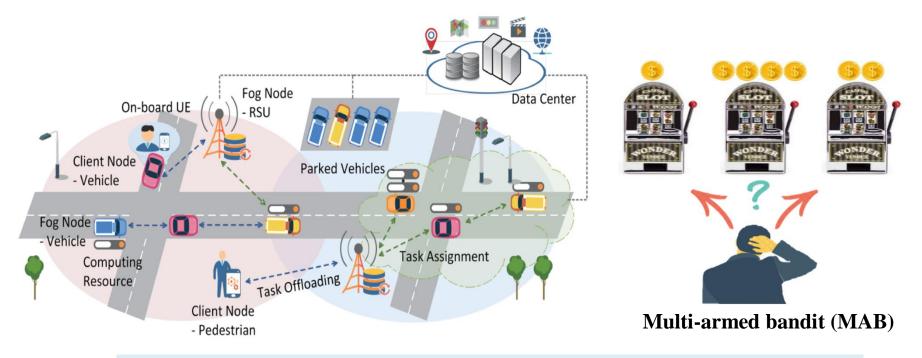
- Moving intelligence for *opportunistic* access & *swarm* intelligence
- Mobility-Enhanced Edge inTelligence (MEET)

When/where to offload/cache/push (when/where are the opportunities)?

How much gain can be achieved by moving clouds?

S. Zhou, Y. Sun, Z. Jiang, Z. Niu, "Exploiting Moving Intelligence: Delay-Optimized Computation Offloading in Vehicular Fog Networks", *IEEE Commun. Mag*, 2019 (accepted)

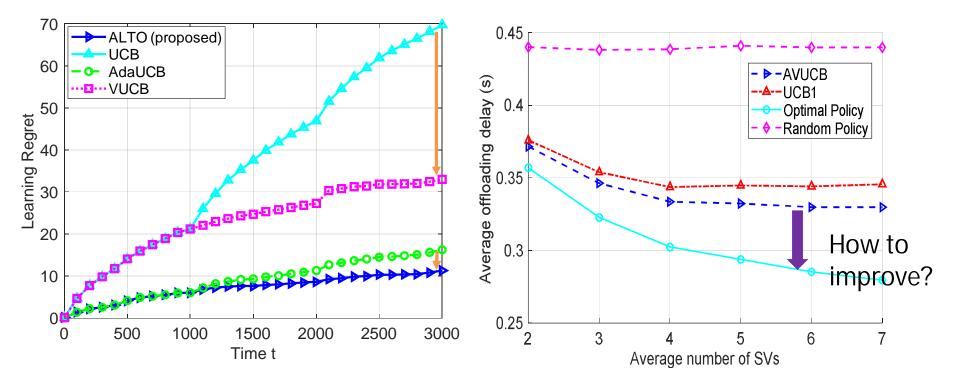
Mobility as the Opportunity



- "Mobility increases the capacity of ad hoc wireless networks" (Grossglauser/Tse, Infocom, 2001)
 - Mobility causes fast fading, bursty and non-uniform traffic
 - Mobility brings opportunities for good channel condition
- "Generalized Pollaczek-Khinchin Formula for Markov Channels" (Huang/Lee, IEEE TCom, 2013)
 - Fast fading channels improve performance
- "A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks" (Gong/Zhou/Niu, IEICE TCom, 2011) & "Basestation sleeping control and power matching for energy-delay tradeoffs with bursty traffic" (Wu/Niu, IEEE TVT, 2016)
 - Non-uniform & Bursty traffic increases energy saving gain

Adaptive & Volatile Multi-Armed Bandit

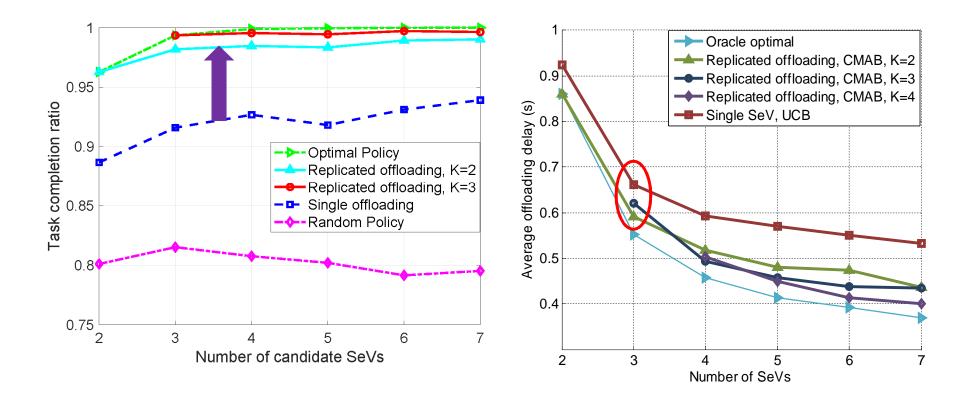
- **Explore** more when **load** is light and **opportunity** is rich
- **Exploit** more when **load** is heavy or **opportunity** is rare


Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, "Learning-Based Task Offloading for Vehicular Cloud Computing Systems", *IEEE ICC'18*. May 2018

Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, "Adaptive learning-based task offloading for vehicular edge computing systems," *IEEE Trans. Veh. Technol.*, 2019 (accepted)

Single Task Offloading in MEC

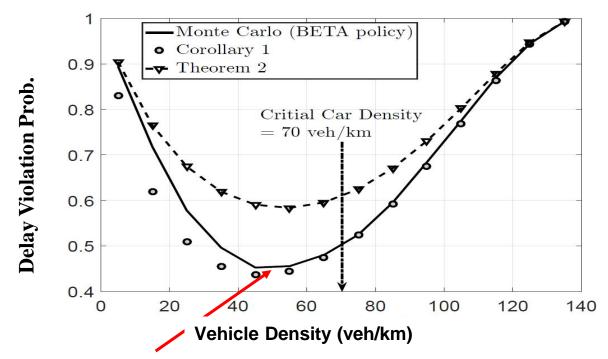
- Benchmark: Upper Confidence Bound (UCB) algorithm
- Opportunistic: Volatile UCB
- I load-aware: AdaUCB
- Load-aware & Opportunistic: ALTO



Niulab

Replica Offloading with VCC

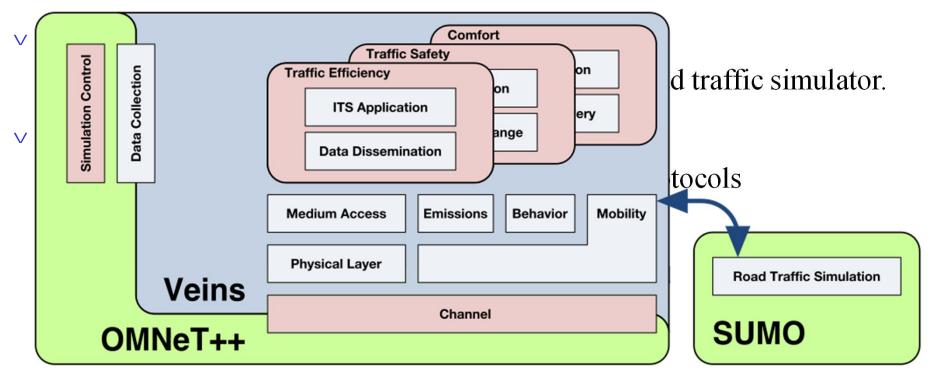
- Replica offloading gets close-to-optimal performance
- Too many replicas not efficient if SeVs not enough


Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, Z. Niu, "Learning-based task replication for vehicular cloud computing systems", *IEEE Globecom*, 2018.

Smart Mobility

• Optimal SeV density?

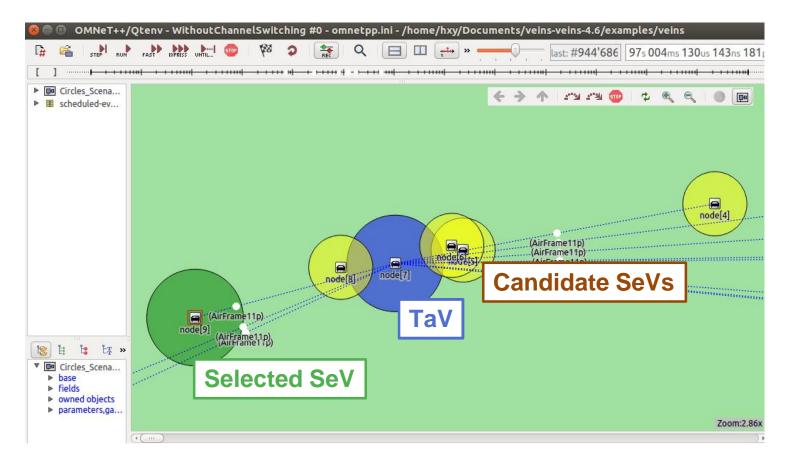
 Higher SeV density à more computing opportunities à traffic jam à Less computing opportunities


Optimum vehicle density for VCC is slightly smaller than traditional critical vehicle density to maximize traffic efficiency!

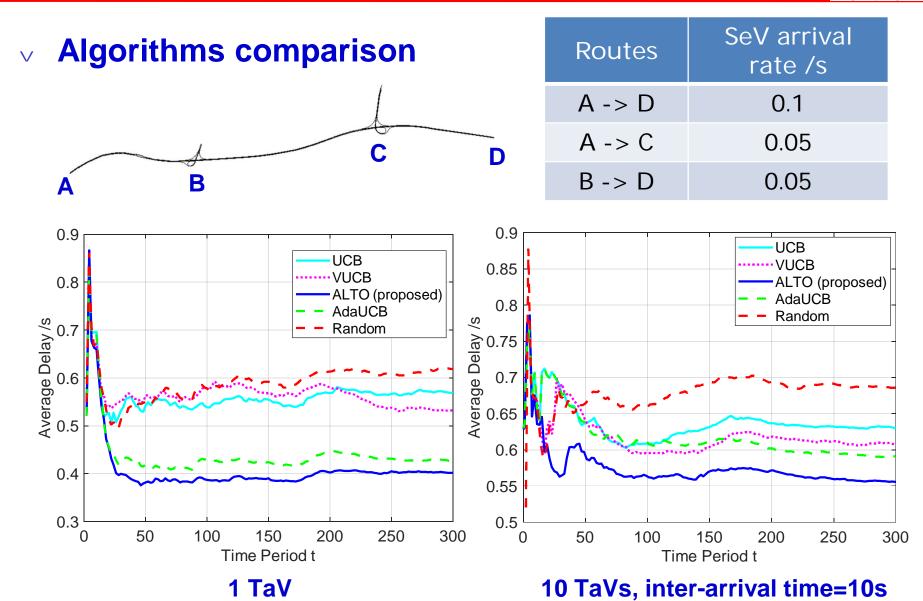
Z. Jiang, S. Zhou, X. Guo, Z. Niu, "Task Replication for Deadline-Constraint Vehicular Cloud Computing: Optimal Policy, Performance Analysis and Implications on Road Traffic," *IEEE IoT J.* Feb. 2018

Veins (Vehicles in Network Simulations)

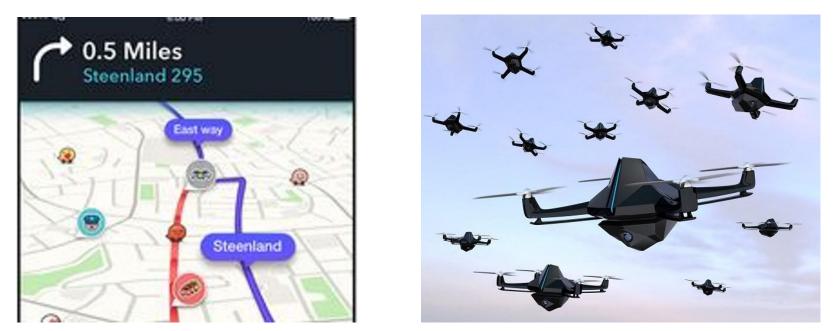
- An open source framework for running vehicular network simulations.
- Obtain map and traffic information from SUMO.
- Build PHY, MAC layer for simulation in OMNeT++.

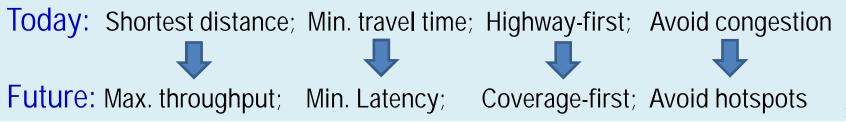


System Level Simulator


v 12 km stretch of G6 Highway in Beijing from Open Street Map.

Simulation Results





Smart Mobility for Intelligence-on-Demand

- Coverage-oriented navigation & Coverage-on-demand
- Service-oriented navigation & Service-on-demand

- Space-Air-Ground Integrated Network (SAGIN) with moving intelligence will fulfill 6G
- Future 5G/6G network
 - Software-defined
 - Cloud/Edge-based
 - AI-enabled
 - -Mobility-enhanced

Mobility-Enhanced Edge inTellegence (MEET)