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5G: What’s Missing?

e What's 5G? -- Everything 4G couldn’t provide & There will be no 6G!
— It’'s EVERYTHING, like ATM (Asynchronous Transfer Mode)!
— Everything is nothing & Nothing is everything (“Duck Theorem™)
— Realistically, anything can be provided by 2020 & eMBB & MTC

« What's 6G? -- Anything can be prowded by 2030 & Full Coverage
Latency & URLLC & EE
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“Everything should be made as simple as
Relia i|ity possible, but not simpler” (Albert Einstein)



6G Vision

« “6Genesis” by Academy of Finland, April 2018

— 3 strategic directions
U near-instant & unlimited wireless connectivity
U distributed computing and intelligence
U materials and antennas at very high frequencies

— First 6G Wireless Summit
U 24-26 March 2019, Levi, Lapland, Finland

e 3F's in IMT-2020 (China)
— FULL Coverage
— FULL Spectrum
— FULL Applications




Space-Air-Ground Integrated Network

 Key Challenges
— High-precision 3D localization (~cm)
— Fusion of multi-dimensional & multi-scale sensing information
— Near-instant context-information distribution (~ms)
— Dynamic reconfiguration of heterogeneous resources & network functions
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“Space-Air-Ground Integrated Vehicular Networks for Immersive Driving Experience” (PI), NSFC Principal Project (2017-2021)



URLLC: a Grand New Challenge

 Reliability & Latency: Inter-winded
— Reliability: Successful delivery probability within a deadline (goodput)
— Latency: Reliable delivery as fast as possible

* Reliability w/o latency-constraint or resource-limitation

— Retransmission (e.g., ARQ in Internet)

— Diversity (e.g., multi-path routing, multi-channel transmission)
 Low latency w/o (too high) reliability requirement

— Short packet/frame (finite blocklength)

— Blocking or alternative routing (e.g., telephone network)

ultra Reliable AND Low-Latency with Limited Resources!



Latency: a Puzzling Word

e Air Interface vs E2E?

— EZ2E communication delay: packetizing, coding/modulating, transmitting,
decoding/demodulating, de-packetizing, fronthaul/backhaul, .....

— You can’t just move the bottleneck to others

e Communication vs Information?

— EZ2E information delay: sensing/learning, updating, scheduling,
transmitting, execution, ...

— Freshness (Age) of Information

« Mean vs Bound?
— Delay bound guarantee is much harder than mean delay guarantee

— Delay bound violation probability: P{D>D,,,, }<e leads to reliability



Freshness of Information

v Age of Context/Status Information

1 Timely update on context/status information & crucial in decision-
making systems

1 Acquisition & Scheduling & Transmission & Execution & Feedback

Destination
(fusion & Decision

- center, controller)

9 7 6 Transmission

Execution
Updating Scheduling

Z. Jiang, B. Krishnamachari, S. Zhou, Z. Niu, “Decentralized status update for age-of-information optimization
in wireless multiaccess channels,” IEEE International Symposium on Information Theory (ISIT), 2018

X. Zheng, S. Zhou, Z. Jiang, Z. Niu, “Closed-Form Analysis of Non-Linear Age-of-Information in Status
Updates with an Energy Harvesting Transmitter”, IEEE Trans. Wire.ess Commun., 2019 (under revision)



URLLC: Context-awareness

« Traditionally, networks designed for the worst-case
* In reality, the worst case is very rare

p(1 —p) Tk, ipt

Poisson (1) Buffer(k)e E[D] — }\(1 _ pk+1)

M/M/1(K) service system P{D = Dmax} = per{l-pbmax < ¢

p=Hi P = pHi(1p)/ (1K)

For k=2, 1=3, D,,,=10ms

- If E[D]=10ms, then u=18; If E[D]=1ms, then u=56
- If Pg<10-3, then u=28; If Pg<10->, then u=138
- If e=103, then n=251; If e=10-, then u=621

“Context-aware uURLLC V2X for Connected & Automated Cars” (PI), Intel Collaborative
Research Institute for Intelligent and Connected Automated Cars (2018-2021)



Context-aware uRLLC

« Traditionally, networks designed for the worst-case
* In reality, the worst case is very rare
e URLLC should be context-aware

KPI value Scenario

Delay 1-10ms » Automated overtaking & high density platooning
(e2e, » status updates for collaborative collision avoidance
status : : : :
update 50ms  See through (10 Mbit/s) & Bird’s Eye view (40 Mbit/s)
packets)  10oms « Trajectory handshake
Reliability  10° » Automated overtake &High density platooning
103 * Trajectory handshake
Positioning 10cm  Vulnerable road user discovery
30cm « Automated overtake & High density platooning & Trajectory
handshake

“Context-aware URLLC V2X for Connected & Automated Cars” (PI), Intel Collaborative
Research Institute for Intelligent and Connected Automated Cars (2018-2021)



URLLC: Solutions (There is no free lunch)

 Bring extraresources (redundancy) closer to UEs
— Communication: mmWave & coverage cost & blockage
— Compute: cloud computing, edge computing, traffic offloading, ...
— Caching/Push: mobile caching, edge caching, content push, ...

SDN/NFV enables 3C convergence

e Bring extra information (intelligence) across network
— Traffic characteristics & QoS requirements
— Network topology and conditions
— Mobility information

BigData/Al enables distributed intelligence
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Connected Intelligence via Al

« Embed intelligence across whole network (access, routers,
gateways, servers)to provide greater level of automation and
adaptiveness (agility, resiliency, security, etc.)

Embedded Edge F(_)g CI(_)ud
Intelligence Intelligence Intelligence Intelligence
Edge Computing & Caching Content Delivery Network Cloud Storage
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Make networks full of Al (&)

challenge: Who responsible for deployment/operation of edge clouds?

“Smart Networking in the Era of Artificial Intelligence” (Co-Pl),
NSFC-Scientific Foundation of Ireland (2018-2022) 11



Intelligent Vehicles for Smart Networking & City

« Autonomous vehicles with rich sensing, communication, computing,

and caching capability, and, power supply, enabling them to be
moving sensors NW, moving edge clouds, and even moving BSs

e Moving vehicles can bring Matters (people, goods), Energy, and
Information (intelligence) to every corners of the city

Smart City

INTELLIGENT VEHICLE

12



Distributed Learning via Moving Vehicles

« How can networking help Al? & Learning over the Air
— Cannot send ALL data to clouds

— Limited compute and storage on embedded nodes

— Leverage edge caching and computing to improve efficiency of deep
learning models via wireless networks

Uplink:
Training
Inference

Downlink:
Model and
Parameter
update

Resources

W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving Device-Edge Cooperative
Inference of Deep Learning via 2-Step Pruning,” IEEE INFOCOM’19 Workshop, April 2019.



Augment Intelligence via Moving Vehicles

Moving intelligence for opportunistic access & swarm intelligence

Mobility-Enhanced Edge inTelligence (MEET)
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How much gain can be achieved by moving clouds?

S. Zhou, Y. Sun, Z. Jiang, Z. Niu, “Exploiting Moving Intelligence: Delay-Optimized

Computation Offloading in Vehicular Fog Networks”, IEEE Commun. Mag, 2019 (accepted)

When/where to offload/cache/push (when/where are the opportunities)?
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Mobility as the Opportunity

o “Mobility increases the capacity of ad hoc wireless networks”
(Grossglauser/Tse, Infocom, 2001)

— Mobility causes fast fading, bursty and non-uniform traffic
— Mobility brings opportunities for good channel condition

e “Generalized Pollaczek-Khinchin Formula for Markov Channels”
(Huang/Lee, IEEE TCom, 2013)

— Fast fading channels improve performance

« “ADynamic Programming Approach for Base Station Sleeping in
Cellular Networks” (Gong/zhou/Niu, IEICE TCom, 2011) & “Base-
station sleeping control and power matching for energy-delay
tradeoffs with bursty traffic” (Wu/Niu, IEEE TVT, 2016)

- Non-uniform & Bursty traffic increases energy saving gain

15



Offloading while Learning N

v Adaptive & Volatile Multi-Armed Bandit
1 Explore more when load is light and opportunity is rich
1 Exploit more when load is heavy or opportunity is rare
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Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-Based Task Offloading for
Vehicular Cloud Computing Systems”, IEEE ICC’18. May 2018

Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “‘Adaptive learning-based task
offloading for vehicular edge computing systems," IEEE Trans. Veh. Technol., 2019 (accepted) 16



Single Task Offloading in MEC

(Y
Nhiulab

v Adaptive Learning-based Task Offloading (ALTO)
1 Benchmark: Upper Confidence Bound (UCB) algorithm

1 Opportunistic: Volatile UCB

1 load-aware: AdaUCB

1 Load-aware & Opportunistic: ALTO
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Replica Offloading with VCC

Task completion ratio

[%
Replica offloading gets close-to-optimal performance
Too many replicas not efficient if SeVs not enough
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Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, Z. Niu, “Learning-based task

replication for vehicular cloud computing systems”, IEEE Globecom, 2018.
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Smart Mobility N

e Optimal SeV density?

— Higher SeV density & more computing opportunities & traffic jam a
Less computing opportunities
1

— Monte Carlo (BETA policy)
o Corollary 1
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Optimum vehicle density for VCC is slightly smaller than traditional
critical vehicle density to maximize traffic efficiency!

Z. Jiang, S. Zhou, X. Guo, Z. Niu, “Task Replication for Deadline-Constraint Vehicular Cloud Computing:
Optimal Policy, Performance Analysis and Implications on Road Traffic,” IEEE IoT J. Feb. 2018 19



Svystem Level Simulator

v Veins (Vehicles in Network Simulations)
1 An open source framework for running vehicular network simulations.
1 Obtain map and traffic information from SUMO.
1 Build PHY, MAC layer for simulation in OMNeT++.
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System Level Simulator

v 12 km stretch of G6 Highway in Beijing from Open Street Map.
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Simulation Results

. . SeV arrival
Routes
v Algorithms comparison rate /s
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Smart Mobility for Intelligence-on-Demand

« Coverage-oriented navigation & Coverage-on-demand
e Service-oriented navigation & Service-on-demand

Today: Shortest distance; Min. travel time; Highway-first; Avoid congestion

¥ $ $ $

Future: Max. throughput; Min. Latency;  Coverage-first; Avoid hotspots

23



Summary Nicri

e Space-Air-Ground Integrated Network (SAGIN) with
moving intelligence will fulfill 6G

e Future 5G/6G network
— Software-defined
— Cloud/Edge-based

— Al-enabled
— Mobility-enhanced

Mobility-Enhanced Edge inTellegence (MEET)
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