# Integration of Molecular Communications into Future Generation Wireless Networks



Werner Haselmayr, A.Springer, G. Fischer, C. Alexiou, H. Boch, P.A. Hoeher, F. Dressler, and R. Schober





## OUTLINE

♥ Why Molecular Communications (MC)

♥ Macro-Scale MC

₵ Micro-Scale MC

₵ Integration into Future Generation Wireless Networks

¢ Summary

## WHY MOLECULAR COMMUNICATIONS (MC)

- ⇐ Communication where the use of EM waves becomes challenging
  - ${\rm \textit{$ \texttt{E} $ $Human body}}$
- ₵ Information transmission through molecules (inspired by nature)
- ₵ Bio-compatible and high energy efficiency
- ₵ Macro- (>mm) and micro-scale (<mm)</p>



J⊻U

**Source:** Y. Murin et al., "Optimal Detection for Diffusion-Based Molecular Timing Channels," *IEEE Trans. Mol. Biol. Multi-Scale Commun.*, 2019, submitted for publication.

## MC COMPONENTS

- ₵ IEEE standardization efforts (IEEE 1906.1)
- ₵ Transmitter
  - € Modulation: Concentration, type, or release time
- ₵ Propagation channels
  - $\in$  Diffusion, flow-assisted, or walk
- ⇐ Receiver
  - $\in$  Absorption, observation



Source: T. Suda and T. Nakano, "Molecular Communication: A Personal Perspective," *IEEE Trans. Nanobiosci.*, vol. 17, no. 4, pp. 424-432, Oct. 2018.

J⊼∩

## MACRO-SCALE MC

- ¢ Range: mm m
- € Enables communication in complex and harsh (industrial) environments
  - $\pm\,$  Tunnels or mines
  - $\in$  Pipe networks
- ₵ Experimental platforms available
  - $\in$  Air-based
  - $\in$  Fluid-based

## MACRO-SCALE MC – AIR-BASED DEMONSTRATORS

- ₵ Alcohol molecules
- ⊄ Ventilator



C Multiple sprays and sensors



**Source:** B.H. Koo et al., "Molecular MIMO: From Theory to Prototype," *IEEE J. Sel. Areas Commun.*, vol. 34, pp. 600-614, Mar. 2016.



J⊻U

**Source:** N. Farsad et al., "Tabletop Molecular Communication: Text Message through Chemical Signals," PLOS ONE, Vol. 8, Dec. 2013 Confined environment



**Source:** S. Qiu et al., "A Molecular Communication Link for Monitoring in Confined Environments," in *Proc. Int. Conf. Communications*, pp. 718-723, Jun. 2014.

## MACRO-SCALE MC – FLUID-BASED DEMONSTRATORS

- ₵ TX/RX: Peristaltic pumps/pH sensors
- ₵ Multi-chemical platform (acid and base)



**Source:** N. Farsad et al., "A Novel Experimental Platform for In-Vessel Multi-Chemical Molecular Communications," in Proc. Global Communications Conf., Dec. 2017, pp. 1-6.

#### (a) 20m Flume from Transmitter



(b) Rod Obstacles

**Source:** Iresha Atthanayake et al., "Experimental molecular communications in obstacle rich fluids," in *Proc. Int. Conf. Nanoscale Computing and Communication*, Sept. 2018, pp. 1-2.



## MC FOR INDUSTRIAL APPLICATIONS (MAMOKO)

- ₵ Recently launched project
  - $\pm$  5 German universities
  - £ 08/2019 10/2021 (3 years)
  - £ €3.26 million
- Goal: Applicability of macro-scale MC for industrial applications
- C Theoretical design and practical implementation of air- and fluid-based macro-scale MC system
- C Example: Experimental testbed based on magnetic nanoparticles



Source: MAMOKO project proposal.

#### J⊼∩

## MICRO-SCALE MC

- C Range: nm − mm
- ₵ Still in its infancy
- ⇐ Envisioned applications
  - £ Internet of Bio-NanoThings (IoBNT)
  - £ Targeted (cooperative) drug delivery
  - $\in$  Intra-body networks
- ₲ Mainly theoretical studies

## INTERNET OF BIO-NANOTHINGS (IOBNT)

- ₵ Advancement of IoT and IoNT
- $\ensuremath{\mathbb{C}}$  MC is well suited for communication in IoBNT

![](_page_9_Figure_4.jpeg)

![](_page_9_Figure_5.jpeg)

J⊻U

## INTEGRATION INTO FUTURE WIRELESS NETWORKS

- - $\in$  Molecular  $\Leftrightarrow$  EM
  - $\in$  Application dependent
- ₲ Security mechanisms
  - £ Malicious attacks
  - € Classical and nature-inspired methods

![](_page_10_Figure_7.jpeg)

**Source:** I. F. Akyildiz et al., "The internet of Bio-Nano things," *IEEE Commun. Mag.*, vol. 53, no. 3, pp. 32–40, Mar. 2015.

## MC-RELATED CHALLENGES

- ♥ Physical layer techniques for micro- and macro-scale MC
  £ Channel estimation, detection, …
- ₵ Design of embedded devices with MC capabilities
- ₵ Development of bio-nanothings
- ⇐ Development of application-oriented testbeds
- ₲ Standardization of a layered architecture for MC

## SUMMARY

- ₵ MC holds great promise in complex environments
- ₵ Micro-scale MC
  - $\in$  Still in its infancy
  - £ Medical applications (e.g., intra-body networks)
- ₵ Macro-scale MC
  - £ Practical realization in near future
  - £ Smart infrastructure monitoring
- ₵ Main challenges
  - $\in$  Bio-cyber interface
  - $\in$  Security mechanisms

## WANT TO KNOW MORE ABOUT MC?

- ¢ 16-18 April 2019, Linz, Austria
- © 3 keynotes, 2 tutorials, 4 technical sessions

![](_page_13_Picture_5.jpeg)

## DRAFT

- - € Definition, Pros/cons (bio-compatible, low-energy, slow, ISI (!)), Application, Standardization
  - $\pm$  Models for TX, Channel and RX
  - $\in$  Micro- and Macro-scale
- - $\in$  Realization in near future
  - £ Show demonstrators (Air-based (spray), fluid-based (acid/base, cell)
  - £ Mamoko (1slide)
- - $\in$  IoT -> IoNT -> IoBNT; explain idea; applications
- ¢ Research challenges
- © Opportunities/Applications/Challenges for Integration of MC in 6G (2 slides)

### J⊻U

![](_page_14_Figure_15.jpeg)