From NR to 6G in Unlicensed Spectrum: the RAT for Wireless Private Networks in Industry 4.0

Sandra Lagén and Lorenza Giupponi

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Barcelona, Spain

6G Summit 2019 March 26th, Levi, Lapland, Finland

Motivation

2 of 14

- Industry 4.0: integrate IoT and cyber-physical systems to the connected industries and automation domain...
 - Stringent requirements: availability, reliability, latency, security, integrity, maintainability, and, in some cases, accuracy positioning
 - Flexibility: mobile robots, automated guided vehicles, and head mounted displays with advanced mobile applications for workers (e.g., XR devices)
 - Opportunity for the cellular industry to conform a privately-owned and wirelessly-connected network (WPN) for the future smart factories
- Unlicensed spectrum:
 - Cellular expansion: beyond the usual licensed paradigm (recent trend through LTE-LAA, MulteFire, NR-U)
 - Interest for industrial WPNs: due to its relatively ease of access, large global availability, and non-dependency on public networks

Analyze the applicability of NR and 6G-based access to unlicensed spectrum (NR-U and 6G-U) as the RAT for Industry 4.0 scenarios

CTTC | 6G Summit NR-U in Industry 4.0

- Industry 4.0 requirements
- Challenges for future cellular networks
- NR-U
- Evolution towards beyond NR-U and 6G-U
 - frequency bands
 - operational modes
 - regulatory requirements
- NR-U and 6G-U applicability to future smart factories
 - pillars
 - $\ \square$ integration

Requirements of selected Industry 4.0 devices:

Industrial devices	latency	availability	throughput	number
Industrial robot (control)	<1 ms	>99.9999%	kbps	>100
Mobile robot (control, XR)	<1 ms	>99.9999%	Mbps	>100
Sensor (monitoring)	\sim 100 ms	>99.99%	kbps	>200
Head mounted display (XR)	<10 ms	>99.9999%	G-Mbps	>50
Handheld terminal (safety)	<10 ms	>99.9999%	M-kbps	>50
Automated guided vehicle	<10 ms	>99.9999%	Mbps	>10
Security camera	\sim 100 ms	>99.99%	G-Mbps	>10

- Industry 4.0 devices can be classified as combinations of: latency-critical, availability-critical, throughput-critical, and massive-critical
- 5G promises to fulfill some of the requirements, such as high reliability and low latency, as well as to support mobility for robotics and machines
 - lacktriangle URLLC, eMBB, mMTC ightarrow separate URC and LLC, more slice categories
 - latency-guarantee: TSN
 - WPN: Ethernet replacement, standalone operation in unlicensed

- Key challenge for future smart factories:
 - provide connectivity for industrial control and automation systems by addressing simultaneously the variety of devices with diverse requirements
- Some critical aspects of industrial WPNs are not addressed in 5G yet, and will need to be revisited in 6G...
 - security and privacy
 - □ latency below 1 ms
 - resilience for massive deployments
 - deployment and management of multiple spatially-collocated WPNs,
 - resilience against external unintentional interference,
 - resilience against external intentional jamming

NR-U

6 of 14

- NR-U has been investigated in a 3GPP Rel-16 SI, and a recently approved 3GPP Rel-16 WI will enable its inclusion in future NR specifications...
 - objective: extend the applicability of NR to unlicensed spectrum bands as a general purpose technology through a design that allows fair coexistence across different RATs
 - \Box target: sub 7 GHz bands (2.4, 3.5, 5, and 6 GHz bands)
 - □ **layout scenarios**: indoor sub 7 GHz, outdoor sub 7 GHz

Operator A

Operator B

NR-U

7 of 14

deployment scenarios: carrier aggregation, dual connectivity, standalone

- coexistence requirement: NR-U devices should not impact deployed Wi-Fi services (data, video, and voice services) more than an additional Wi-Fi network would do on the same carrier
- regulatory requirements: channel access (LBT, MCOT), power limits (EIRP and PSD), bandwidth constraints (OCB), functionalities (DFS, FR)

TC | 6G Summit NR-U in Industry 4.0

Frequency bands:

- LAA and MulteFire: 5 GHz band
- NR-U: sub 7 GHz bands
- Beyond NR-U and 6G-U:
 - consider multiple bands, including recently opened spectrum for unlicensed operations (6 GHz), mmWave bands (37 GHz, 60 GHz), even higher bandwidth (90-100 GHz bands) and the THz level

Operational modes:

- LAA: carrier aggregation, MulteFire: standalone mode
- NR-U: carrier aggregation, dual connectivity, and standalone modes
- Beyond NR-U and 6G-U:
 - expand deployment scenarios by considering >2 bands for CA and DC
 - aggregation/connectivity with multiple unlicensed bands (sub 6 GHz, mmWave, and THz) to enable a new multi-band standalone mode uniquely in unlicensed

Regulatory requirements:

- LBT usage partially covers the challenges of WPNs. As a downside, it may increase the access delay, and so the total latency...
- Critical: analyze the impact of LBT on the E2E latency, to enable NR-U and beyond to be used in industrial WPNs

Pillars:

- multi-band operation and multi-spectrum sharing paradigms through the integration of sub 6 GHz, mmWave, and THz bands, licensed and unlicensed, at the RAN to improve reliability, availability, and resilience
- $\hfill \square$ network slicing to meet simultaneously the requirements of latency-critical, availability-critical, throughput-critical, and massive-critical devices
- distributed computing and network control to increase the quality, accuracy and precision of industrial processes
- enhanced URLLC to address low-latency, high-secure and high-reliable communications, including TSN, packet duplication, and multi-connectivity
- All these pillars require the support for a ML-assisted network control in charge of managing, through software-based platforms, the complexity of the network in an autonomous manner...
 - data-centric approach: information collection through sensors, distributed actuators to execute actions, taken by controllers

TTC | 6G Summit NR-U in Industry 4.0

NR-U and 6G-U Applicability to Future Smart Factories

ML-assisted network control to integrate RAN slicing, multi-band operation, and multi-spectrum sharing paradigms in Industry 4.0.:

- Challenges:
 - automatic selection of the most appropriate band and/or technology
 - stability of multiple distributed learning controllers making decisions
 - □ timeliness of the autonomous decisions and learning processes

CTTC | 6G Summit NR-U in Industry 4.0

NR-U for mmWave bands:

- investigate how the coexistence framework in the unlicensed context changes under directional transmissions/receptions
 - S. Lagen, L. Giupponi, S. Goyal, N. Patriciello, B. Bojovic, A. Demir, M. Beluri, J. Mangues, "5G NR in Unlicensed Spectrum: Design Challenges and Solutions", under review, available at: https://arxiv.org/abs/1809.10443
 - S. Lagen, L. Giupponi, N. Patriciello, "LBT Switching Procedures for New Radio-based Access to Unlicensed Spectrum", IEEE GLOBECOM, Dec. 2018.
 - S. Lagen, L. Giupponi, B. Bojovic, A. Demir, M. Beluri, "Paired Listen Before Talk for multi-RAT Coexistence in Unlicensed mmWave Bands", IEEE ICC -WS. May 2018.
 - S. Lagen, L. Giupponi, "Listen Before Receive for Coexistence in Unlicensed mmWave Bands", IEEE WCNC, Apr. 2018.

TTC | 6G Summit NR-U in Industry 4.0

Refs

12 of 14

5G-LENA https://5g-lena.cttc.es/

- end-to-end, standard-compliant, full-stack NR network simulator
- □ open source, designed as a pluggable module to ns-3, emulation capabilities
- NR Rel-15 features (numerologies, BWPs, dynamic TDD, beamforming, 3GPP MIMO channel model, OFDMA/TDMA), calibrated
 - N. Patriciello, S. Lagen, L. Giupponi, B. Bojovic, "An Improved MAC Layer for the 5G NR ns-3 module", Workshop on ns-3, June 2019.
 - N. Patriciello, S. Lagen, L. Giupponi, B. Bojovic, "5G New Radio Numerologies and their Impact on the End-To-End Latency", IEEE CAMAD, Sep. 2018.
 - B. Bojovic, S. Lagen, L. Giupponi, "Implementation and Evaluation of Frequency Division Multiplexing of Numerologies for 5G New Radio in ns-3", Workshop on ns-3, June 2018.
- next release by Sept. 2019:
 - beyond 5G extensions to the NR module for its use in unlicensed spectrum (NR-U), and coexistence studies with WiGig
 - NR-compliant PHY abstraction including LDPC and 256-QAM

TTC | 6G Summit NR-U in Industry 4.0

NR end-to-end delay analysis

calibration in mmWave InH

0.2

SINR (dB)

3GPP max (Ericsson 3GPP min (Qualcomm

Thank you for your attention! Questions?

sandra.lagen@cttc.es